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Equivalent Circuit Parameters of an
Aperture Coupled Open Resonator Cavity

R. K. Mongia, Member, IEEE, and R. K. Arora, Senior Member, IEEE

In this paper, we use modified form of Bethe’s small hole
coupling theory to compute equivalent circuit parameters of
an aperture coupled open resonator cavity. The open resonator
cavity is composed of spherical mirrors of circular cross section.
The cavity is coupled to a rectangular waveguide by means
of a common hole in the mirror and the shorted end wall
of the rectangular waveguide. Closed form expressions have
been obtained for the equivalent circuit parameters. Experiments
conducted in the W-band frequency range show good agreement
with theory when an experimentally estimated correction to
the transmission coefficient is applied for the thickness of the
coupling holes.

I. INTRODUCTION

PEN RESONATORS offer unique advantages over
Oclosed cavities at higher microwave frequencies and
beyond [1]. Among their applications are their use as resonant
cavities in gyrotrons [2] and in the determination of electrical
properties of dielectric materials [3], [4]. Two popular open
resonator configurations are shown in Figs. 1 and 2. The open
resonator configuration shown in Fig. 1 comprises spherical
mirrors of circular cross section. This configuration has been
used in gyrotrons. The configuration shown in Fig. 2 is a
variant of the configuration shown in Fig. 1 where the plane
#' = 0 is replaced by a conductor and the input and output
couplings are in the same mirror. The configuration shown in
Fig. 2 is attractive for the use of open resonator cavity for the
characterization of dielectric materials because the dielectric
sample can be placed directly on the flat surface [3], [5].

The resonant modes of open resonators have been exten-
sively studied in the past by using both the scalar theory [6],
[7] and the rigorous vector theory [4], [8]. However, relatively
little effort has been devoted to the study of coupling to open
resonators. At microwave and millimeter-wave frequencies, a
popular scheme of coupling is by means of a small hole in the
mirror and the shorted end wall of a rectangular waveguide
as shown in Figs. 1 and 2. The overall cavity operates in the
transmission mode. Due to the open geometry, the coupling
holes may also radiate into free space. It has been shown by
Cullen that the power radiated by small coupling holes into
the free space is lower, by 2-3 orders of magnitude, than the
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Fig. 1. An open resonator cavity excited by a rectangular waveguide.
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Fig. 2. A plano concave open resonator cavity.

power lost in the imperfect conducting walls of the cavity
mirrors [9]. The unloaded Q-factor of the eavity is thus not
affected by the direct radiation from coupling holes into the
free space.

In this paper, we use the modified form of Bethe’s small
aperture coupling theory as given by Collin [10] to compute
the equivalent circuit for the coupling schemes shown in Figs.
1 and 2. It has been noted by Collin that reaction termg have
to be added to the original Bethe’s small coupling theory to
make it consistent and the equivalent circuit to be physically
realizable. Finally, some experimental results are also reported
and comparison is made with theory.

0018-9480/93803.00 © 1993 IEEE
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II. THEORY

We first consider the coupling for configuration as shown
in Fig. 1. We assume that a TE;o mode is incident in the
input rectangular waveguide. For a rectangular waveguide, the
normalized mode functions of propagating TE;q modes are
given as, [10]

E_li_o - eloe—JﬂmZ7
H10+ = (hlo + hzlo)e_]ﬂmz

z
Ei- =ee’™?,

Hio- =(~hio + hz10)e’ ™ €y
In the above equations e, k1o and h,10 are given by
ew = — jkoZoNsin(mz/a)ay,
hio = 7B10N sin (7x/a)a,
h.10 = —J\—;I cos (rz/a)a, ®

where
N = (=2/abkyZoB10)"?

Let the amplitude of the incident wave be unity. The incident
wave can then be expressed as

E; = Ejo+ 3
The incident wave has no electric field perpendicular to the
plane of the coupling hole. Therefore, no electric dipole is
induced in the hole. There is only an x-component of the
tangential magnetic field, so only an x-directed magnetic
dipole is induced. The coupling hole is assumed to be small
and of zero thickness. Let My and M, be the magnetic dipole
moments induced in the input and output holes. According to
Collin [10, p. 510]

M =0, (Hg + Hyy — Hap1 — Hap) “4)
where @, denotes the dyadic magnetic polarizability of the
hole, H,; is the magnetic field due to incident wave in the
absence of the coupling hole, and H i, Hor1 and Ho,o are
the reaction fields. H,; is the dominant mode field produced
in the waveguide by the dipole M. H,1 and H.9 are the
dominant fields produced in the resonant cavity by —M; and
—M . All the field values are calculated at the center of the
hole. It may be noted that in the original Bethe’s theory, the
terms Hy,.,Ho.1 and Hy,.s are not included. In the present
case, (4) can be wiitten as

M, = am(Hglx + Hypg — Hop1z — H2'r‘2:1:) (5)
where the extra subscript x denotes the z-component of the
corresponding field vector. For a circular hole, «,, is related
to the radius of the coupling hole r, by

4r,a
am = —3

We now proceed to calculate different terms of (5).
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Evaluation of Hg1.

If the hole size is small compared to waveguide dimensions,
the tangentialmagnetic field in the absence of coupling hole is
twice the incident field. From (1)—(3), Hg1. is given by

Hglz = 2.]/810]\7 (6)

Evaluation of Hiry

A transverse magnetic dipole Mj, placed in an infinite
groundplane radiates as a magnetic dipole of double the
strength. Hy,, term in (5) is thus found as

Hipe = (jwptoHyg+ - My)
- Hig- - ay = —2jf10M1./ab @

Evaluation of Hor1y

To compute the reaction term Ha,;, we first need to
normalizemodes of the open resonator. The resonator modes
are normalized as

/Ep~Epdv:1 (8)

where E,, denotes the electric field for the pth resonant mode.
We are interested in exciting the TEMggq modes of the open
resonator. For the TEMggq modes of the open resonator the
predominant field components that exist inside the resonator
for the assumed excitation are Fy and H,/. The expression
for electric field inside the resonator for the TEMggq modes
can be written as [4]

E,=FE,a, = Al% exp (=" Jw?)

. <C.OS > (k' — 7 + kr"?/2R)a, 9)
sin

where r’ denotes the axial distance from the axis of the

resonator and the cos and sin terms refer, respectively, to

symmetrical and anti-symmetrical modes with respect to 2’ =

0 plane. The various terms in (9) are given by

¢ = tan™! (2'/2,) (102)
wye = ;7 DR, — D)} (10b)
Zo =TWe2/Ag (10c)
w? =we (14 2%/ 2,2) (10d)
’I"I2 =1’,2 4 yIZ (loe)
R=2'(1+2,:/2") (10f)

where the symbols have their usual meaning. The second and
third terms in the argument of trigonometric function in (9)
exist because the wavefront, in general, is not plane. Equations
(9) and (10) show that the wavefront is plane in the 2’ = 0
plane but its radius of curvature decreases awidy from the
z' = 0 plane and becomes the same as those of the mirrors
at the location of the mirrors. If the radius of curvature of
mirrors is large, we can assume that the wavefront is plane at
all locations inside the resonator. Therefore, the second and
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third terms in the argument of the trigonometric function can
be neglected. Equation (9) then becomes,

Wo
E,=E,a, = AlE exp

(27,2 CO8 N,
o) (G ) 6 ay
The above approximation helps us in deriving a closed form
expression for the normalization constant A;. Putting the value

of E, from (11) in (8), we get

2

A= ——
Wo+/ (D)

(12)

The expression for normalized magnetic field of the resonator
is given by [10, p. 386]

1
Hp = Evap (133)
In the present case, E, is given by (11). Therefore,
H,=Hy.a, = —Al%i exp
(2, 2y [ —sin N,
(=% fw )( cos )(kz Yay (13b)

where the upper term — sin (k2’) is to be used for symmetrical
modes and the lower one is to be used for anti-symmetrical
modes.

Once the normalized fields are known, one can compute
the reaction termHo,.;. If the resonator field excited in the
resonator by magnetic dipole —M is hp1H,p, then hpy is
given by [10, p. 394]

B —Kk2H,, - M,
R, - R{1+(1-5)/Q}

where k,, is the free space wavenumber corresponding to
the resonant frequency and %, is the free space wavenumber
corresponding to any angular frequency w close to the resonant
frequency. In our case H, is given by (13), so h,; is computed
as

hpl (14)

B = A1k2 My,
PR - R2{T+ (1 - 5)/QY]
wo - Sin
w—d( cos )(—kD/Q) (15)
where wy is the width of the Gaussian beam at 2’ = —D/2

and can be calculated using relations (10a)—(10d).

The magnetic field at input hole due to resonator field
excited by dipole— M7, is therefore given by multiplying (15)
by (13b) and evaluating the resulting term at the center of

input hole. Noting that there is an antinode of magnetic field
at z’ = £d/2, Ha,y1 is found as

oo k2Mi, A
T R, — k{1 (1~ 5)/Q)
w?
2 = “WlMlm (168)

5
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where
A2k2
Wi = Lo -
PR k21 + (1 5)/Q)]
w?
- — 16b
wg (16b)

Evaluation of Hypo,
Let the magnetic field excited in the resonator due to
magnetic dipole —M>, be given by hyoH,. Noting that the
width of the beam at z = D/2 is also wq, hpo is computed as
_ A1k2 Mo,
(k2 — k3{1+ (1= 5)/Q}]
: ﬂ(‘ sm)(kD/Z)

Wq CoS

hp2
(17)

or, the magnetic field at the input hole due to the resonator
field excited by — M, is given by

k2 Moy Aqz
H. re == 2 ’
e TR, — k{1 + (1 5)/Q)]
Y Wy, (18a)
wd2
where
A k2
Wy =7 >
TR - BT+ (- 5)/Q)]
W2
. wg (18b)

In (18a) and (18b), the upper sign is to be used for symmetrical
modes and the lower sign is to be used for anti-symmetrical
modes.

Once all the terms appearing in (5) have been evaluated,
the following equation can be written for the magnetic dipole
induced in the input hole

. 2§10 M1
Mlx = 0m [2.7ﬂ10N - J’ﬁla(l)_b‘l—

+ WiMi, + W2M2a:] (19)
Equation (19) gives one relation between M, and M. To
get another relationship between them, we write (3) for the
output hole.

Proceeding in a similar manner as above and noting that
there is no incident field in the output waveguide, we get the
following relationship between M, and Ma,:

~2jB10Ma;
™ ab

+ WiM,, + Wlem]

M. 2z = QU
(20)
Using (19) and (20), one can find values for M;, and M», as

My, [1 + am(2j1810/ab - Wl)

_ (Osz2)2 :l
1 + ozm(2j,810/ab — Wl)
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= 2jﬂloamN (21&)
OémWQ
M, = - My, 21b
% 14 am(2jBio/ab — Wr) ! (21b)
Input Admittance
The reflected signal in input waveguide is

T=—-14+b (22)

where by is the reflected signal due to dipole My, placed
transversely in metallic plane. Its value is given by

_ JWto
2
“hig  2Myz0, = _koZoﬁl(]NMlx

by
(23)
Therefore, the reflection coefficient in the input guide is,

T=-1- koZoﬂloNMlm (24)

Defining X = 20,,810/ab, and U = (2j819/ab) — W1, one
gets after substituting value of M, from (21a) into the above
equation

2jX(1+ anU)
(14 anU)? — (0 W1)?

The input admittance looking into the resonator is thus given
by

=1+ (25)

1—7 1
Y S1Er X
OcmW1
- - 26a
JXA{L = W1 /(1 +5X)} @6
Further, defining K = o A2w? /w3, Vi, becomes
1
}/in - ]_X
K?w
JXwre —w?{1+ (1 - 5)/Qu}] — Kw?/(1+1/5X)
(26b)

Equivalent Circuit

To represent the above form of input admittance we choose
the equivalentcircuit as shown in Fig. 3. The input admittance
for this circuit is given by

Yin= - JjB
nlw?
— 27
JwL(w? — o — 2] Qu T jR 1= 7B) &7
where
wf =1/LC, (28a)
R=w,L/Q,, and (28b)
wLg =R (28¢)

It is seen that (26b) and (27) have the same form. There-
fore, the equivalent circuit shown in Fig. 3 is suitable for
representing the coupling scheme as shown in Fig,. 1.

Since Ls/L = 1/Q,, at resonance, Lg can be neglected in
comparison to L if Q, > 1.
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Fig. 3. Equivalent circuit representation ofopen resonator cavities shown in

Figs. 1 and 2.

Comparing (26b) with (27), we get

B =1/X = ab/2B100m (284d)

and
n? K abwe
wL N X N 2,310wd2 !
It may be noted that there are three equations (28a), 28(b) and

(28¢) with four unknowns L, C, R, and n?. To compute their
values, we arbitrarily choose C' = 1. This gives

(28¢)

L=1/u? (29a)

Further, using (28e) we get

2
2 ab w? 2

20810wiwl

(29b)
Once L is known, the resistance R can be computed using
(28b). Further, it is seen from (27) that the real part of
n?/(1 — jB) denotes the external resistance R.. Its value is
found as

abAZu?
R, = 1o 30
T (@b 2oam)12B0wie, OO
The external )-factor is thus given by
1
Qe = R.w,C
_ {1+ (ab/2B100)?}2B10w3 G31)

202
abAfw?

Since the final form of @), is very simple and in closed form,
one can find the response of the cavity in a simple manner
using the equivalent circuit approach.

Transmission Through Cavity

The coupling coefficient is defined as

k= Qu/Qe

If the holes are of same size in both the mirrors, the transmis-

sion through the cavity at resonance is given by, [11]
4x2

(14 2k)2

(32)

T(wr) = (33)
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One can also compute the transmitted power in the output
waveguide using field theory approach by computing the fields
excited in the output waveguide by the magnetic dipole Mo,
whose value is known ((21b)). For the equivalent circuit to
be valid, both approaches should lead to the same numerical
results.

Coupling for the Configuration of Fig. 2

The analysis can be carried out along similar lines are
outlined above for the configuration of Fig. 1. It may be noted
that the structure shown in Fig. 2 supports anti-symmetric
modes of the structure shown in Fig. 1. In this case the
normalization constant A; appearing in (11) is found as

1
Ay = —+/(8/7D) (34)
The resulting expression obtained for the external Q-factor is
the same as given by (31) except that the term A; is replaced
by A} exp (—s%/w?k) where A} is given by (34).

HI. RESULTS

In the preceding section, a closed form expression was
obtained for the external -factor. Its value can be easily
computed once the structural parameters are known. For small
coupling holes, the term (ab/2,810am)2 > 1. Therefore, as
(31) and (32) show, the coupling coefficient « varies with
radius of the coupling hole as rS. Further, using (33), one
finds that the transmitted power through cavity varies as r,12
for small values of coupling coefficient x. The transmitted
power thus depends very strongly on the hole size.

By putting value of A; from (12) in (31), it is seen that
for the configuration shown in Fig. 1 the external ()-factor
varies as w2D. This is in contrast to the external @ -factor of
parallel plate Fabry—Perot resonators in which case the external
Q-factor increases linearly with D [12]. In a Fabry-Perot
resonator of parallel plate resonators, the unloaded (-factor
also increases linearly with D. Therefore as (32) and (33)
show, the transmission through a parallel plate Fabry—Perot
cavity remains unchanged as the distance between mirrors is
varied. However, with resonators formed of spherical mirrors,
this is not the case. The unloaded @Q-factor in this case still
increases in a linear fashion. However, the external () factor
varies as w2D. Therefore, the power transmitted through an
open resonator cavity composed of spherical mirrors would
vary with separation. For small values of coupling, the power
transmitted thorugh the resonator would vary as w™ 44 with
separation as shown by (31)—(33).

IV. EXPERIMENTAL RESULTS

Experiments were conducted at about 94 GHz to determine
the coupling for the configuration shown in Fig. 1. The cavity
was set up to characterize dielectric materials in the W-band.
The mirrors used had a radius of curvature of 330 mm and the
mirror radius was 22.5 mm. The radius of the coupling hole
was 0.5 mm. This value of radius cannot be termed “small.” In
our experiments, relatively large-size hole was used to obtain a
reasonable level of output power. The thickness (axial length)
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TABLE 1
THEORETICAL AND MEASURED TRANSMISSION THROUGH AN
OPEN RESONATOR CAVITY (¢ = 2.54 mm, b = 1.27
mm, f, = 93.6 GHz, R, = 330 mn, r, = 0.5 mm)

D Qu Qe Coupling(dB)
(cm) Theory*  Measured*
403  3.38x104  1.06x105  -8.2 346
612  521x104  202x105 94 -35.8
805  5.50x104  3.01x105  -116 -39.0
1.10  6.58x104  5.16x105  -138 -41.6
1415  5.64x104%  7.64x105  -17.8 -46.1
1608  2.93x104 943x105 247 -53.6
1800  2.90x104  1.14x106  -263 -56.5
2009  2.45x10%  1.37x106 293 -57.8
2202 2.35x104  1.61x106  -309 -60.1
2410  1.84x10%  1.89x106  -344 -63.0
2603  1.31x10%  2.17x106 385 -68.4
2811  0.96x104  2.50x106  -42.4 -70.0

* The theoretical results are for coupling holes of zero thickness while
experimental results shown are for the finite thickness of the coupling holes.

“of the coupling holes was about 0.5-1 mm which caused an

appreciable attenuation in the coupled power. Considering that
the thick hole acts as a section of below cut-off waveguide, a
1 mm length hole can cause attenuation of about 26 dB at 94
GHz. Due to relatively large coupling hole and finite thickness
of coupling holes, we do not expect our theoretical results to
match with experiment. The theory presented in this paper is
valid for small coupling holes of zero thickness.

It has been shown that effect of finite thickness of the
coupling hole is to cause reduction in coupling. The amount of
reduction in coupling depends only on the size and thickness
of the hole [13], [14]. Further, it has also been shown by
Cohn [13] that the effect of large hole size is to introduce a
multiplicative factor in the coupling. This factor also depends
only on the size of the hole. We can therefore check our results
for the variation of coupling as the spacing between mirrors is
varied. The effect of “large” and thick coupling holes can be
considered to be the same for all values of spacing between
the mirrors.

For theoretical computation, the experimentally measured
value of ()-factor was used as the unloaded ()-factor. By
increasing the separation between mirrors, the unloaded (-
factor first increases but it starts decreasing after some distance
due to diffraction loss. Therefore, measured value of (-
factor is chosen as the unloaded value of (Q-factor. The
measured values of Q-factor and coupling are shown in Table
1 for various values of spacing between the mirrors. Strictly
speaking, the measured value of Q is the loaded ¢} (loaded by
hole coupling), but in the present case this also represents the
unloaded Q-factor because the coupling is very small in all
cases as seen from Table 1. The theoretical values of coupling
are also shown in the same Table. It is seen that, as expected,
measured value of coupling is much lower than that predicted
by theory mainly because of finite thickness of the coupling
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Fig. 4. Comparison of theoretical and experimental resuits for transmission
through cavity shown in Fig. 1. The measured results have been increased by
an amount of 26.4 dB which is the effect due to large-size and finite thickness
of coupling holes.

holes. For D = 4 cm, the theoretically predicted value of
coupling is —8.2 dB whereas the measured value is —34.6
dB. We assume that the difference of 26.4 dB between theory
and measured values is due to the attenuation caused by finite
thickness and relatively large size of the coupling holes. If we
add this value of 26.4 dB to all measured values, we find that
the agreement between theory and experiment is quite good.
In Fig. 4, we plot the measured value of Table 1 increased by
an amount of 26.4 dB. The theoretical values from the same
Table are also drawn in Fig. 4. It is seen that the agreement
between these results is very good for all values of separation
‘D’ for which measurements were made. These results validate
the form of expressions of the theoretical results.

V. CONCLUSIONS

In this paper, we use modified form of Bethe’s hole coupling
theory to compute coupling between a rectangular waveguide
and an open resonator through a small hole of zero thickness.
Simple closed form expressions have been obtained for the ex-
ternal ¢)-factor. The results reported in this paper are believed
to be useful for designing aperture couplings for devices such
as open resonator power combiners, gyrotrons etc.
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