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Equivalent Circuit Parameters of an

Aperture Coupled Open Resonator Cavity
ILK.IVlongia, Member-, IEEE, and R. K. Arora, Senior Member, IEEE

In this paper, we use modified form of Bethe’s small hole

coupling theory to compute equivalent circuit parameters of
an aperture conpled open resonator cavity. The open resonator
cavity is composed of spherical mirrors of circular cross section.
The cavity is coupled to a rectaugtdar waveguide by means
of a common hole in the mirror and the shorted end wall
of the rectangular waveguide. Closed form expressions have

been obtained for the equivalent circuit parameters. Experiments

conducted in the W-band frequency range show good agreement

with theory when an experimentally estimated correction to

the transmission coefficient is applied for the thickness of the

coupling holes.

I. INTRODUCTION

o PEN RESONATORS offer unique advantages over

closed cavities at higher microwave frequencies and

beyond [1]. Among their applications are their use as resonant

cavities in gyrotrons [2] and in the determination of electrical

properties of dielectric materials [3], [4]. Two popular open

resonator configurations are shown in Figs. 1 and 2. The open

resonator configuration shown in Fig. 1 comprises spherical

mirrors of circular cross section. This configuration has been

used in gyrotrons. The configuration shown in Fig. 2 is a

variant of the configuration shown in Fig. 1 where the plane

,/ = O is replaced by a conductor and the input and output

couplings are in the same mirror. The configuration shown in

Fig. 2 is attractive for the use of open resonator cavity for the

characterization of dielectric materials because the dielectric

sample can be placed directly on the flat surface [3], [5].

The resonant modes of open resonators have been exten-

sively studied in the past by using both the scalar theory [6],

[7] and the rigorous vector theory [4], [8]. However, relatively

little effort has been devoted to the study of coupling to open

resonators. At microwave and millimeter-wave frequencies, a

popular scheme of coupling is by means of a small hole in the

mirror and the shorted end wall of a rectangular waveguide

as shown in Figs. 1 and 2. The overall cavity operates in the

transmission mode. Due to the open geometry, the coupling

holes may also radiate into free space. It has been shown by

Cullen that the power radiated by small coupling holes into

the free space is lower, by 2–3 orders of magnitude, than the
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Fig. 1. An open resonator cavity excited by a rectangular waveguide.
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Fig. 2. A piano concave open resonator cavity.

power lost in the imperfect conducting walls of the cavity

mirrors [9]. The unloaded Q-factor of the cavity is thus not

affected by the direct radiation from coupling holes into the

free space.

In this paper, we use the modified form of Bethe’s small

aperture coupling theory as given by Collin [10] to compute

the equivalent circuit for the coupling schemes shown in Figs.
1 and 2. It has been noted by Collin that reaction terms have

to be added to the original Bethe’s small coupling theory to

make it consistent and the equivalent circuit to be physically

realizable. Finally, some experimental results are also reported

and comparison is made with theory.
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II. THEORY

We first consider the coupling for configuration as shown

in Fig. 1. We assume that a TEIO mode is incident in the

input rectangular waveguide. For a rectangular waveguide, the

normalized mode functions of propagating TEIO modes are

given as, [10]

l?~o = eloe–~~’o”,

I+lo+ = (hlo + h.lo)e-~p’”’

Elo- = eloe]p’”z,

Hlo- = (–hlcI + hZIO)e~p’OZ (1)

In the above equations elo, h10 and h.10 are given by

elo = —jkOZOIV sin (m/a)ay,

h10 = jfllof’V sin (nz/a)az

hzl(J = : Cos (7rz/a)az (2)

where

N = (–2/a@ZO~10)l/2

Let the amplitude of the incident wave be unity. The incident

wave can then be expressed as

Ei = Elo+ (3)

The incident wave has no electric field perpendicular to the

plane of the coupling hole. Therefore, no electric dipole is

induced in the hole. There is only an x-component of the

tangential magnetic field, so only an x-directed magnetic

dipole is induced. The coupling hole is assumed to be small

and of zero thickness. Let Ml and Mz be the magnetic dipole

moments induced in the input and output holes. According to

Collin [10, p. 510]

Ml = tin . (H@ + H1. – ~2r-1 – ~2r2) (4)

where ti~ denotes the dyadic magnetic polarizability of the

hole, Hgl is the magnetic field due to incident wave in the

absence of the coupling hole, and HT1, HzT1 and HZTZ are

the reaction fields. Hrl is the dominant mode field produced

in the waveguide by the dipole Ml. Hz7.1 and HZTZ are the

dominant fields produced in the resonant cavity by –Ml and

–iVf2. All the field values are calculated at the center of the
hole. It may be noted that in the original Bethe’s theory, the

terms H1., H2,1 and H2.2 are not included. In the present

case, (4) can be wiitten as

~1. = c%(H~l. + Hlv. – H2r1z – H2r2z) (5)

where the extra subscript x denotes the x-component of the

corresponding field vector. For a circular hole, an is related

to the radius of the coupling hole r. by

4r03
Qm. —

3

We now proceed to calculate different terms of (5).

Evaluation of 11~1~

If the hole size is small compared to waveguide dimensions,

the tangentialmagnetic field in the absence of coupling hole is
twice the incident field. From (l)–(3), Hgl~ is given by

H,qlz = 2j@10iV (6)

Evaluation of Hlpz

A transverse magnetic dipole All. placed in an infinite

groundplane radiates as a magnetic dipole of double the

strength. Hlrm term in (5) is thus found as

Hlrm = (jwpOH1o+ . Ml)

. Hlo- . ax = –2j/310Mlz/ab (7)

Evaluation of HzTIX

To compute the reaction term HzTZI, we first need to

normalizemodes of the open resonator. The resonator modes

are normalized as

/
Ep. Epdv=l (8)

where Ep denotes the electric field for the pth resonant mode.

We are interested in exciting the TEMooq modes of the open

resonator. For the TEMooq modes of the open resonator the

predominant field components that exist inside the resonator
for the assumed excitation are Eyt and Hz!. The expression

for electric field inside the resonator for the TEMooq modes

can be written as [4]

Ep = Epvav = Al; exp (–r’2/w2)

“():: (h’ – n + kT’2/2R)a,/ (9)

where r’ denotes the axial distance from the axis of the

resonator and the cos and sin terms refer, respectively, to

symmetrical and anti-symmetrical modes with respect to z’ =

O plane. The various terms in (9) are given by

# = tan-l (.z’/zO) (lOa)

W02 = */{D(2Ro - D)} (lOb)

.zO= Two2/.& (1OC)

W2 = W02(1 + 2’2/zd2 ) (lOd)

r /2 = X’2 + y’z (lOe)

R =z’(1 + .z02/z’2) (lOf)

where the symbols have their usual rtieaning. The second and

third terms in the argument of trigonometric function in (9)

exist because the wave front, in general, is not plane. Equations

(9) and (10) show that the wavefront is plane in the z’ = O

plane but its radius of curvature decreases awiiy from the

z’ = O plane and becomes the same as those of the mirrors

at the location of the mirrors. If the radius of curvature of

mirrors is large, we can assume that the wavefrcmt is plane at

all locations inside the resonator. Therefore, the second and
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third terms in the argument of the trigonometric function can where

be neglected. Equation (9) then becomes, Afk;

Ep = EpYaY1 = Al ~ exp
“ = [k~,- k~{l + (1 -j)/Q}]

()

.fl
~(-#2/w2) ~~ (k.z’)ag,

(:16b)
(11) w:

The above approximation helps us in deriving a closed form
Evaluation of H2T2Z

expression for the normalization constant Al. Putting the value Let the magnetic field excited in the resonator due to

of .EP from (11) in (8), we get magnetic dipole –N12X be given by hp2Hp. Noting that the

0 width of the beam at z = D/2 is also wd, hp2 is computed as

“ =woh (12)

The expression for normalized magnetic field of the resonator

is given by [10, p. 386]

Alk:M’z

“2= [k:r - ~k’{1 + (1 –~)/Q}l

W..—

()
;% (kD/2)

wd
(17)

Hp = ~VxEp (13a) or, the magnetic field at the input hole due to the resonator

field excited by –M2Z is given by

In the present case, Ep is given by (11). Therefore, h: M’.A~2

Hp = Hpzazl = –Al $ exp
‘“x’ ‘+[k~, - k~{l + (1 -j)/Q}]

W02

()

. — = –W’M’Z (1.8a)

. (-r’’/w’) ~~~ (k.z’)aZr (13b)
wd~

where

where the upper term – sin (kz’) is to be used for symmetrical

modes and the lower one is to be used for anti-symmetrical

modes.

Once the normalized fields are known, one can compute

the reaction termllz~~l. If the resonator field excited in the
resonator by magnetic dipole —Ml is hpl Hp, then hPl is

given by [10, p. 394]

–k;Hp . Ml
(14)

‘PI = k~r – k~{l + (1 –.O/Q}

where ko~ is the free space wavenumber corresponding to

the resonant frequency and ko is the free space wavenumber

corresponding to any angular frequency w close to the resonant
frequency. In our case Hp is given by (13), so hpl is computed

as

A1k~Mlz

‘P1 = [k~r - k~{l + (1 -A/Q}l

W.
.— ();& (-kD/2)

wd
(15)

where wd is the width of the Gaussian beam at z’ = –D/2

and can be calculated using relations (lOa)-(lOd).

The magnetic field at input hole due to resonator field

excited by dipole–Mlx is therefore given by multiplying (15)

by (13b) and evaluating the resulting term at the center of

input hole. Noting that there is an antinode of magnetic field
at Zr = +d/2, H2TZ1 is found as

w’
‘ = –WIMlz.4

Wd
(16a)

Alk~

‘2= T [k& - k;{l + (1 - j)/Q}]
W02

.— (18b)
w:

In (18a) and (18b), the upper sign is to be used for symmetrical

modes and the lower sign is to be used for anti-symmetrical

modes.

Once all the terms appearing in (5) have been evaluated,

the following equation can be written for the magnetic dipole

induced in the input hole

+ W’IM1. + W2M2z 1 (19)

Equation (19) gives one relation between Ml. and M’z. To

get another relationship between them, we write (3) for the

output hole.

Proceeding in a similar manner as above and noting that

there is no incident field in the output waveguide, we get the

following relationship between MIZ and M’2:

+ W1M2Z + W2M1z 1 (20)

Using (19) and (20), one can find values for Mlm and MzZ as

[
Mlz 1 + am(2jDlo/ab – Wl)

(amW’)’—
1 + am(2j~u3/ab – Wl) 1
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= 2,jpl(JamN (21a) R L+Ls c

M2% =
Glmwz

1 + am(2j~~0/ab – WI)

Input Admittance

The reflected signal in input waveguide is
‘z ‘21’) 3DD’”

‘f=-l+/)l (22)
n:l

where bl is the reflected signal due to dipole Mlz placed

transversely in metallic plane. Its value is given by
I
Yin

jwpo
bl=~

Fig. 3. Equivalent circuit representation ofopen resonator cavities shown in
Figs. 1 and 2.

. hlo . 2M1zaz = –kOZO,fjoNM1z (23)

Therefore, the reflection coefficient in the input guide is, Comparing (26b) with (27), we get

T = —1 — kOZo610NMlz (24) B = l/X = ab/2,/310an (28d)

Defining X = 2aJ110/ab, and U = (2j~lo/ab) – W1, one and

gets after substituting value of Mlz from (21a) into the above n2 K abwoz
equation

— A; (28e)
~ — ? — z~lowd2

2jx(l + CY.mu)
‘ = ‘1+ (1+ amu)z - (amw~)’

(25) It maybe noted that there are three equations (28a), 28(b) and
(28e) with four unknowns L, C, R, and n2. To compute their

The input admittance looking into the resonator is thus given values, we arbitrarily choose C = 1. This gives

by
L = ~/W; (29a)

K.=*=&
1+’f Further, using (28e) we get

am W1
. (26a)

jx{l – amwl/(l +jx)} (29b)

Further, defining K = an A? w: /w~, Vln becomes Once L is known, the resistance R can be computed using

En=+
(28b). Further, it is seen from (27) that the real part of

n2 / ( 1 – jB) denotes the external resistance R.. Its value is

K2W found as
—

jX[LJ,, – U2{1 + (1 – j)/Qu}] – Kw2/(1 -I- l/jX) R, =
abA~ w:

(26b) {1+ (ab/20~Oa~)2}2p~Owjti~
(30)

Equivalent Circuit
The external Q-factor is thus given by

<
To represent the above form of input admittance we choose Qc=—

the equivalentcircuit as shown in Fig. 3. The input admittance
R.;J7

for this circuit is given by _ {1+ (ab/26’10~m)2}2(3~ 0wj— (31)

~n=–jB
abA~w~

n2u2 Since the final form of Q, is very simple and in closed form,

(2’7) one can find the response of the cavity in a simple manner
jwL(w; – W2 – w2/QU + jU2/(1 – jB)

using the equivalent circuit approach.
where

~28a) Transmission Through Cavityw; = l/LC,

R =wv L/QU, and (28b) The coupling coefficient is defined as

It is seen that (26b) and (27) have the same form. There- If the holes are of same size in both the mirrors, the transmis-
fore, the equivalent circuit shown in Fig. 3 is suitable for sion through the cavity at resonance is given by, [11]

representing the coupling scheme as shown in Fig. 1.

Since Ls/L = l/QU at resonance, Ls can be neglected in 462

comparison to L if QU >> 1. ‘(w’) = (1+ 2K)2
(33)
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One can also compute the transmitted power in the output

waveguide using field theory approach by computing the fields

excited in the output waveguide by the magnetic dipole iW2Z

whose value is known ((21b)). For the equivalent circuit to

be valid, both approaches should lead to the same numerical

results.

Coupling for the Configuration of Fig. 2

The analysis can be carried out along similar lines are

outlined above for the configuration of Fig. 1. It may be noted

that the structure shown in Fig. 2 supports anti-symmetric

modes of the structure shown in Fig. 1. In this case the

normalization constant Al appearing in (11) is found as

(34)

The resulting expression obtained for the external Q-factor is

the same as given by (31) except that the term Al is replaced

by A; exp (–s2/wj) where A; is given by (34).

III. RESULTS

In the preceding section, a closed form expression was

obtained for the external Q-factor. Its value can be easily

computed once the structural parameters are known. For small

coupling holes, the term (ab/2@10csm)2 >> 1. Therefore, as

(31) and (32) show, the coupling coefficient K varies with

radius of the coupling hole as r ~. Further, using (33), one

finds that the transmitted power through cavity varies as rOIZ

for small values of coupling coefficient K. The transmitted

power thus depends very strongly on the hole size.

By putting value of Al from (12) in (31), it is seen that

for the configuration shown in Fig. 1 the external Q-factor

varies as wjD. This is in contrast to the external Q -factor of

parallel plate Fabry–Perot resonators in which case the external

Q-factor increases linearly with D [12]. In a Fabry-Perot

resonator of parallel plate resonators, the unloaded Q-factor

also increases linearly with D. Therefore as (32) and (33)

show, the transmission through a parallel plate Fabry–Perot

cavity remains unchanged as the distance between mirrors is

varied. However, with resonators formed of spherical mirrors,

this is not the case. The unloaded Q-factor in this case still

increases in a linear fashion. However, the external Q factor

varies as wjD. Therefore, the power transmitted through an

open resonator cavity composed of spherical mirrors would

vary with separation. For small values of coupling, the power

transmitted thorngh the resonator would vary as w– 4d with

separation as shown by (31)-(33).

IV. EXPERIMENTAL RESULTS

Experiments were conducted at about 94 GHz to determine

the coupling for the configuration shown in Fig. 1. The cavity

was set up to characterize dielectric materials in the W-band.

The mirrors used had a radius of curvature of 330 mm and the

mirror radius was 22.5 mm. The radius of the coupling hole

was 0.5 mm. This value of radius cannot be termed “small.” In

our experiments, relatively large-size hole was used to obtain a
reasonable level of output power. The thickness (axial length)

TABLE I
THEORETICAL AND MEASURED TRANSMISSIONTHROUGHAN

OPEN RESONATORCAVITY (a = 2.54 mm, b = 1.27

mm, ~0 = 93.6 GHz, RO = 330 mn, TO = 0.5 mm)

D Q. Qe Coupling

(em) Theory* Measured*

4.03

6.12

8.05

11.10

14.15

16.08

18.00

20.09

22.02

24.10

26.03

28.11

3.38x104

5.21x104

5.5OX1O4

6.58X104

5.64x104

2.93xI04

2.9ox1o4

2.45x104

2.35x104

L84x104

1.31X104

o.96x1o4

1.06x 105

2.02X105

3.01XI05

5.16x105

7.64x105

9.43X105

1.14x106

1.37x106

1.61X106

1.89X106

2.17x106

2.5ox1o6

-8.2 -34.6

-9.4 -35.8

-11.6 -39.0

-13.8 -41.6

-17.8 -46.1

-24.7 -53.6

-26.3 -56.5

-29.3 -57.8

-30.9 -60.1

-34,4 -63.0

-38.5 -68.4

-42.4 -70.0

* The theoretical results are for coupling holes of zero thickness while

experimental results shown are for the finite thickness of the coupling holes.

of the coupling holes was about 0.5–1 mm which caused an

appreciable attenuation in the coupled power. Considering tlhat

the thick hole acts as a section of below cut-off waveguide, a

1 mm length hole can cause attenuation of about 26 dB at 94

GHz. Due to relatively large coupling hole and finite thickness

of coupling holes, we do not expect our theoretical results to

match with experiment. The theory presented in this paper is

valid for small coupling holes of zero thickness.

It has been shown that effect of finite thickness of the

coupling hole is to cause reduction in coupling. The amount of

reduction in coupling depends only on the size and thickness

of the hole [13], [14]. Further, it has also been shown by

Cohn [13] that the effect of large hole size is to introduce a

multiplicative factor in the coupling. This factor also depends

only on the size of the hole. We can therefore check our results

for the variation of coupling as the spacing between mirrors is

varied. The effect of “large” and thick coupling holes can be

considered to be the same for all values of spacing between

the mirrors.

For theoretical computation, the experimentally measured

value of Q-factor was used as the unloaded Q-factor. IBy

increasing the separation between mirrors, the unloaded (Q-

factor first increases but it starts decreasing after some distanlce

due to diffraction loss. Therefore, measured value of (Q-

factor is chosen as the unloaded value of Q-factor. The

measured values of Q-factor and coupling are shown in Table

I for various values of spacing between the mirrors. Strictly

speaking, the measured value of Q is the loaded Q (loaded by

hole coupling), but in the present case this also represents the

unloaded Q-factor because the coupling is very small in all

cases as seen from Table I. The theoretical values of coupling

are also shown in the same Table. It is seen that, as expected,

measured value of coupling is much lower than that predicted
by theory mainly because of finite thickness of the coupling
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Fig. 4. Comparison of theoretical andexperimental results for transmission

through cavity shown in Fig. l. Themeasured resuIts have been increased by
an amount of 26.4 dB which is the effect due to large-size and finite thickness

of coupling holes.

holes. For D = 4 cm, the theoretically predicted value of

coupling is –8.2 dB whereas the measured value is –34.6

dB, We assume that the difference of 26.4 dB between theory

and measured values is due to the attenuation caused by finite

thickness and relatively large size of the coupling holes. If we

add this value of 26.4 dB to all measured values, we find that

the agreement between theory and experiment is quite good.

In Fig. 4, we plot the measured value of Table 1 increased by

an amount of 26.4 dB. The theoretical values from the same

Table are also drawn in Fig. 4. It is seen that the agreement

between these results is very good for all values of separation
‘D’ for which measurements were made. These results validate

the form of expressions of the theoretical results.

V. CONCLUSIONS

In this paper, we use modified form of Bethe’s hole coupling

theory to compute coupling between a rectangular waveguide

and an open resonator through a small hole of zero thickness.

Simple closed form expressions have been obtained for the ex-

ternal Q-factor. The results reported in this paper are believed

to be useful for designing aperture couplings for devices such

as open resonator power combiners, gyrotrons etc.
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